Automatic Characterization of Exploitable Faults: A Machine Learning Approach

نویسندگان

  • Sayandeep Saha
  • Dirmanto Jap
  • Sikhar Patranabis
  • Debdeep Mukhopadhyay
  • Shivam Bhasin
  • Pallab Dasgupta
چکیده

Characterization of the fault space of a cipher to filter out a set of faults potentially exploitable for fault attacks (FA), is a problem with immense practical value. A quantitative knowledge of the exploitable fault space is desirable in several applications, like security evaluation, cipher construction and implementation, design, and testing of countermeasures etc. In this work, we investigate this problem in the context of block ciphers. The formidable size of the fault space of a block cipher mandates the use of an automation to solve this problem, which should be able to characterize each individual fault instance quickly. On the other hand, the automation is expected to be applicable to most of the block cipher constructions. Existing techniques for automated fault attacks do not satisfy both of these goals simultaneously and hence are not directly applicable in the context of exploitable fault characterization. In this paper, we present a supervised machine learning (ML) assisted automated framework, which successfully addresses both of the criteria mentioned. The key idea is to extrapolate the knowledge of some existing FAs on a cipher to rapidly figure out new attack instances on the same. Experimental validation of the proposed framework on two state-of-the-art block ciphers – PRESENT and LED, establishes that our approach is able to provide fairly good accuracy in identifying exploitable fault instances at a reasonable cost. Finally, the effect of different S-Boxes on the fault space of a cipher is evaluated utilizing the framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Explain the theoretical and practical model of automatic facade design intelligence in the process of implementing the rules and regulations of facade design and drawing

Artificial intelligence has been trying for decades to create systems with human capabilities, including human-like learning; Therefore, the purpose of this study is to discover how to use this field in the process of learning facade design, specifically learning the rules and standards and national regulations related to the design of facades of residential buildings by machine with a machine ...

متن کامل

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017